Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(2): fcae100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585667

RESUMO

Monoclonal antibodies have emerged as a leading therapeutic agent for the treatment of disease, including Alzheimer's disease. In the last year, two anti-amyloid monoclonal antibodies, lecanemab and aducanumab, have been approved in the USA for the treatment of Alzheimer's disease, whilst several tau-targeting monoclonal antibodies are currently in clinical trials. Such antibodies, however, are expensive and timely to produce and require frequent dosing regimens to ensure disease-modifying effects. Synthetic in vitro-transcribed messenger RNA encoding antibodies for endogenous protein expression holds the potential to overcome many of the limitations associated with protein antibody production. Here, we have generated synthetic in vitro-transcribed messenger RNA encoding a tau-specific antibody as a full-sized immunoglobulin and as a single-chain variable fragment. In vitro transfection of human neuroblastoma SH-SY5Y cells demonstrated the ability of the synthetic messenger RNA to be translated into a functional tau-specific antibody. Furthermore, we show that the translation of the tau-specific single-chain variable fragment as an intrabody results in the specific engagement of intracellular tau. This work highlights the utility of messenger RNA for the delivery of antibody therapeutics, including intrabodies, for the targeting of tau in Alzheimer's disease and other tauopathies.

2.
Neuropathol Appl Neurobiol ; : e12950, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112248

RESUMO

OBJECTIVE: Filipin complex is an autooxidation-prone fluorescent histochemical stain used in the diagnosis of Niemann-Pick Disease Type C (NP-C), a neurodegenerative lysosomal storage disorder. It is also widely used by researchers examining the distribution and accumulation of unesterified cholesterol in cell and animal models of neurodegenerative diseases including NP-C and Sanfilippo syndrome (mucopolysaccharidosis IIIA; MPS IIIA). Recently, it has been suggested to be useful in studying Alzheimer's and Huntington's disease. Given filipin's susceptibility to photobleaching, we sought to establish a quantitative biochemical method for free cholesterol measurement. METHODS: Brain tissue from mice with MPS IIIA was stained with filipin. Total and free cholesterol in brain homogenates was measured using a commercially available kit and a quantitative LC-MS/MS assay was developed. Gangliosides GM1, GM2 and GM3 were also quantified using LC-MS/MS. RESULTS: As anticipated, the MPS IIIA mouse brain displayed large numbers of filipin-positive intra-cytoplasmic inclusions, presumptively endo-lysosomes. Challenging the prevailing dogma, however, we found no difference in the amount of free cholesterol in MPS IIIA mouse brain homogenates cf. control tissue, using either the fluorometric kit or LC-MS/MS assay. Filipin has previously been reported to bind to GM1 ganglioside, however, this lipid does not accumulate in MPS IIIA cells/tissues. Using a fluorometric assay, we demonstrate for the first time that filipin cross-reacts with both GM2 and GM3 gangliosides, explaining the filipin-reactive inclusions observed in MPS IIIA brain cells. CONCLUSION: Filipin is not specific for free cholesterol, and positive staining in any setting should be interpreted with caution.

3.
Mol Pharm ; 19(11): 3987-3999, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36125338

RESUMO

Messenger RNA (mRNA) holds great potential as a disease-modifying treatment for a wide array of monogenic disorders. Niemann-Pick disease type C1 (NP-C1) is an ultrarare monogenic disease that arises due to loss-of-function mutations in the NPC1 gene, resulting in the entrapment of unesterified cholesterol in the lysosomes of affected cells and a subsequent reduction in their capacity for cholesterol esterification. This causes severe damage to various organs including the brain, liver, and spleen. In this work, we describe the use of NPC1-encoded mRNA to rescue the protein insufficiency and pathogenic phenotype caused by biallelic NPC1 mutations in cultured fibroblasts derived from an NP-C1 patient. We first evaluated engineering strategies for the generation of potent mRNAs capable of eliciting high protein expression across multiple cell types. We observed that "GC3" codon optimization, coupled with N1-methylpseudouridine base modification, yielded an mRNA that was approximately 1000-fold more potent than wild-type, unmodified mRNA in a luciferase reporter assay and consistently superior to other mRNA variants. Our data suggest that the improved expression associated with this design strategy was due in large part to the increased secondary structure of the designed mRNAs. Both codon optimization and base modification appear to contribute to increased secondary structure. Applying these principles to the engineering of NPC1-encoded mRNA, we observed a normalization in NPC1 protein levels after mRNA treatment, as well as a rescue of the mutant phenotype. Specifically, mRNA treatment restored the cholesterol esterification capacity of patient cells to wild-type levels and induced a significant reduction in both unesterified cholesterol levels (>57% reduction compared to Lipofectamine-treated control in a cholesterol esterification assay) and lysosome size (157 µm2 reduction compared to Lipofectamine-treated control). These findings show that engineered mRNA can correct the deficit caused by NPC1 mutations. More broadly, they also serve to further validate the potential of this technology to correct diseases associated with loss-of-function mutations in genes coding for large, complex, intracellular proteins.


Assuntos
Glicoproteínas de Membrana , Doenças de Niemann-Pick , Humanos , Glicoproteínas de Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibroblastos/metabolismo , Colesterol/metabolismo , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia
4.
Blood ; 139(12): 1833-1849, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35081253

RESUMO

Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endolysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise from impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store and ultimately release the essential pore-forming protein perforin and proapoptotic serine proteases, granzymes, into the synapse formed between the CTL and target cell. We discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux through stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biological techniques, we found that the cytotoxic defect arises specifically from impaired perforin pore formation. We demonstrated defects of CTL function of varying severity in patients with NP-C1, with the greatest losses of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-ß-cyclodextrin; however, restoration of autophagy through TFEB overexpression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose patients with NP-C1 to atypical infections and impaired immune surveillance more generally.


Assuntos
Doença de Niemann-Pick Tipo A , Doença de Niemann-Pick Tipo C , Colesterol/metabolismo , Granzimas , Humanos , Doença de Niemann-Pick Tipo C/metabolismo , Perforina/genética , Linfócitos T Citotóxicos/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1865(11): 129979, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34364973

RESUMO

BACKGROUND: Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE: Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS: While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE: Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.


Assuntos
Cobre/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos
6.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919712

RESUMO

The unfolded protein response (UPR) is an intracellular signaling pathway essential for alleviating the endoplasmic reticulum (ER) stress. To support the productive infection, many viruses are known to use different strategies to manipulate the UPR signaling network. However, it remains largely unclear whether the UPR signaling pathways are modulated in the lytic cycle of Epstein-Barr virus (EBV), a widely distributed human pathogen. Herein, we show that the expression of GRP78, a central UPR regulator, is up-regulated during the EBV lytic cycle. Our data further revealed that knockdown of GRP78 in EBV-infected cell lines did not substantially affect lytic gene expression; however, GRP78 knockdown in these cells markedly reduced the production of virus particles. Importantly, we identified that the early lytic protein BMLF1 is the key regulator critically contributing to the activation of the grp78 gene promoter. Mechanistically, we found that BMLF1 can trigger the proteolytic cleavage and activation of the UPR senor ATF6, which then transcriptionally activates the grp78 promoter through the ER stress response elements. Our findings therefore provide evidence for the connection between the EBV lytic cycle and the UPR, and implicate that the BMLF1-mediated ATF6 activation may play critical roles in EBV lytic replication.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Proteínas de Choque Térmico/genética , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Regulação para Cima , Sequência de Bases , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , DNA Viral/biossíntese , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Transdução de Sinais , Ativação Transcricional/genética , Resposta a Proteínas não Dobradas , Regulação para Cima/genética , eIF-2 Quinase/metabolismo
7.
Biometals ; 33(2-3): 87-95, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100150

RESUMO

Niemann-Pick Disease Type C (NP-C) is a fatal lysosomal storage disorder with progressive neurodegeneration. In addition to the characteristic cholesterol and lipid overload phenotype, we previously found that altered metal homeostasis is also a pathological feature. Increased brain iron in the Npc1-/- mouse model of NP-C may potentially contribute to neurodegeneration, similar to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Deferiprone (DFP) is a brain penetrating iron chelator that has demonstrated effectiveness in preventing neurological deterioration in Parkinson's disease clinical trials. Therefore, we hypothesized that DFP treatment, targeting brain iron overload, may have therapeutic benefits for NP-C. Npc1-/- mice were assigned to four experimental groups: (1) pre-symptomatic (P15) + 75 mg/kg DFP; (2) pre-symptomatic (P15) + 150 mg/kg DFP; (3) symptomatic (P49) + 75 mg/kg DFP; (4) symptomatic (P49) + 150 mg/kg DFP. Our study found that in Npc1-/- mice, DFP treatment did not offer any improvement over the expected disease trajectory and median lifespan. Moreover, earlier treatment and higher dose of DFP resulted in adverse effects on body weight and onset of ataxia. The outcome of our study indicated that, despite increased brain iron, Npc1-/- mice were vulnerable to pharmacological iron depletion, especially in early life. Therefore, based on the current model, iron chelation therapy is not a suitable treatment option for NP-C.


Assuntos
Deferiprona/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quelantes de Ferro/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick
8.
Virus Res ; 256: 76-89, 2018 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30096410

RESUMO

The BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus (EBV) are located close together in the viral genome, which encode glycoprotein L, uracil-DNA glycosylase and a tegument protein, respectively. Here, we demonstrate that the BKRF2 gene behaves as a true-late lytic gene, whereas the BKRF3 and BKRF4 genes belong to the early lytic gene family. Our results further reveal that both BKRF3 and BKRF4 promoters are new synergistic targets of Zta and Rta, two EBV latent-to-lytic switch transactivators. Multiple Rta- and Zta-responsive elements within the BKRF3 and BKRF4 promoters were identified and characterized experimentally. Importantly, we show that DNA methylation is absolutely required for activation of the BKRF4 promoter by Zta alone or in combination with Rta. Moreover, we find that sodium butyrate, an inducing agent of EBV reactivation, is capable of activating the BKRF4 promoter through a mechanism independent of Zta and Rta. Overall, our studies highlight the complexity of transcriptional regulation of lytic genes within the BKRF2-BKRF3-BKRF4 gene locus.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/genética , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Uracila-DNA Glicosidase/genética , Proteínas Virais/genética , Metilação de DNA , DNA Viral/metabolismo , Perfilação da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transativadores/metabolismo
9.
Neurotherapeutics ; 13(3): 614-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26942423

RESUMO

Autosomal recessive inheritance of NPC1 with loss-of-function mutations underlies Niemann-Pick disease, type C1 (NP-C1), a lysosomal storage disorder with progressive neurodegeneration. It is uncertain from limited biochemical studies and patient case reports whether NPC1 haploinsufficiency can cause a partial NP-C1 phenotype in carriers. In the present study, we examined this possibility in heterozygotes of a natural loss-of-function mutant Npc1 mouse model. We found partial motor dysfunction and increased anxiety-like behavior in Npc1 (+/-) mice by 9 weeks of age. Relative to Npc1 (+/+) mice, Npc1 (+/-) mice failed to show neurodevelopmental improvements in motor coordination and balance on an accelerating Rotarod. In the open-field test, Npc1 (+/-) mice showed an intermediate phenotype in spontaneous locomotor activity compared with Npc1 (+/+) and Npc1 (-/-) mice, as well as decreased center tendency. Together with increased stride length under anxiogenic conditions on the DigiGait treadmill, these findings are consistent with heightened anxiety. Our findings indicate that pathogenic NPC1 allele carriers, who represent about 0.66 % of humans, could be vulnerable to motor and anxiety disorders.


Assuntos
Ansiedade/genética , Modelos Animais de Doenças , Atividade Motora , Doença de Niemann-Pick Tipo C/genética , Proteínas/genética , Animais , Comportamento Animal , Marcha , Haploinsuficiência , Peptídeos e Proteínas de Sinalização Intracelular , Locomoção , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/complicações , Doença de Niemann-Pick Tipo C/psicologia , Teste de Desempenho do Rota-Rod
10.
Front Aging Neurosci ; 6: 91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860500

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of ß-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed.

11.
Metallomics ; 6(3): 542-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343124

RESUMO

The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1(-/-) mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1(-/-) mouse model. NPC1 deficiency in the Npc1(-/-) mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1(-/-) mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C.


Assuntos
Metais/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Elementos de Transição/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ceruloplasmina/antagonistas & inibidores , Ceruloplasmina/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Deleção de Genes , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Metais/sangue , Metais/líquido cefalorraquidiano , Camundongos , Camundongos Endogâmicos BALB C , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Proteínas/genética , Elementos de Transição/sangue , Elementos de Transição/líquido cefalorraquidiano
12.
Front Aging Neurosci ; 5: 44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986700

RESUMO

Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

13.
Front Physiol ; 4: 111, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23720634

RESUMO

Altered copper homeostasis and hypercholesterolemia have been identified independently as risk factors for Alzheimer's disease (AD). Abnormal copper and cholesterol metabolism are implicated in the genesis of amyloid plaques and neurofibrillary tangles (NFT), which are two key pathological signatures of AD. Amyloidogenic processing of a sub-population of amyloid precursor protein (APP) that produces Aß occurs in cholesterol-rich lipid rafts in copper deficient AD brains. Co-localization of Aß and a paradoxical high concentration of copper in lipid rafts fosters the formation of neurotoxic Aß:copper complexes. These complexes can catalytically oxidize cholesterol to generate H2O2, oxysterols and other lipid peroxidation products that accumulate in brains of AD cases and transgenic mouse models. Tau, the core protein component of NFTs, is sensitive to interactions with copper and cholesterol, which trigger a cascade of hyperphosphorylation and aggregation preceding the generation of NFTs. Here we present an overview of copper and cholesterol metabolism in the brain, and how their integrated failure contributes to development of AD.

14.
Clin Sci (Lond) ; 122(9): 409-19, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22103431

RESUMO

Inhibition of GSL (glycosphingolipid) synthesis reduces Aß (amyloid ß-peptide) production in vitro. Previous studies indicate that GCS (glucosylceramide synthase) inhibitors modulate phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) and that the ERK pathway may regulate some aspects of Aß production. It is not clear whether there is a causative relationship linking GSL synthesis inhibition, ERK phosphorylation and Aß production. In the present study, we treated CHO cells (Chinese-hamster ovary cells) and SH-SY5Y neuroblastoma cells, that both constitutively express human wild-type APP (amyloid precursor protein) and process this to produce Aß, with GSL-modulating agents to explore this relationship. We found that three related ceramide analogue GSL inhibitors, based on the PDMP (D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) structure, reduced cellular Aß production and in all cases this was correlated with inhibition of pERK (phosphorylated ERK) formation. Importantly, the L-threo enantiomers of these compounds (that are inferior GSL synthesis inhibitors compared with the D-threo-enantiomers) also reduced ERK phosphorylation to a similar extent without altering Aß production. Inhibition of ERK activation using either PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] or U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) had no impact on Aß production, and knockdown of endogenous GCS using small interfering RNA reduced cellular GSL levels without suppressing Aß production or pERK formation. Our data suggest that the alteration in pERK levels following treatment with these ceramide analogues is not the principal mechanism involved in the inhibition of Aß generation and that the ERK signalling pathway does not play a crucial role in processing APP through the amyloidogenic pathway.


Assuntos
Proteínas Amiloidogênicas/biossíntese , Ceramidas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Sequência de Bases , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glicoesfingolipídeos/antagonistas & inibidores , Humanos , Morfolinas/farmacologia , Propanolaminas/farmacologia , Pirrolidinas/farmacologia , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingolipídeos/farmacologia
15.
J Biol Chem ; 286(10): 8252-8262, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21177866

RESUMO

Accumulation of the amyloid ß peptide in the cortical and hippocampal regions of the brain is a major pathological feature of Alzheimer disease. Amyloid ß peptide is generated from the sequential protease cleavage of the amyloid precursor protein (APP). We reported previously that copper increases the level of APP at the cell surface. Here we report that copper, but not iron or zinc, promotes APP trafficking in cultured polarized epithelial cells and neuronal cells. In SH-SY5Y neuronal cells and primary cortical neurons, copper promoted a redistribution of APP from a perinuclear localization to a wider distribution, including neurites. Importantly, a change in APP localization was not attributed to an up-regulation of APP protein synthesis. Using live cell imaging and endocytosis assays, we found that copper promotes an increase in cell surface APP by increasing its exocytosis and reducing its endocytosis, respectively. This study identifies a novel mechanism by which copper regulates the localization and presumably the function of APP, which is of major significance for understanding the role of APP in copper homeostasis and the role of copper in Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Cobre/metabolismo , Neuritos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Cobre/farmacologia , Cães , Endocitose/efeitos dos fármacos , Endocitose/genética , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
16.
Int J Biochem Cell Biol ; 43(1): 146-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21034850

RESUMO

Copper is a cofactor for many essential enzymes in aerobic organisms. When intracellular copper levels are elevated, the Menkes (ATP7A) P-Type ATPase traffics from the trans-Golgi network (TGN) towards the plasma membrane to facilitate copper efflux. The ADP-ribosylation factor 1 (Arf1) is required for maintenance of Golgi architecture and for vesicular trafficking, including the copper-responsive trafficking of ATP7A. Here we report an ATP7A-independent role of Arf1 in copper homeostasis. Whilst the loss of ATP7A function increased copper levels, RNA interference mediated Arf1 knockdown reduced copper accumulation in HeLa cells as well as in both wild-type and ATP7A-null cultured fibroblasts. Arf1 therefore affected copper levels independently of ATP7A mediated copper efflux. Knockdown of Arf79F, the Drosophila melanogasterArf1 orthologue, also reduced copper accumulation in cultured Drosophila S2 cells, indicating an evolutionarily conserved role for this protein in cellular copper homeostasis. Whereas severe Arf1 inhibition with brefeldin A caused fragmentation and dispersal of the TGN resident protein Golgin 97, the peri-nuclear localisation of the Golgin 97 was retained following Arf1 knockdown, consistent with a moderate reduction in Arf1 activity. Ctr1 levels at the plasma membrane of cultured fibroblast cells were reduced following Arf1 knockdown, indicating an Arf1-dependent trafficking pathway is required for correct distribution of this copper uptake protein. Arf1-dependent trafficking pathways are therefore required for optimal copper uptake efficiency in cultured human and Drosophila cells.


Assuntos
Fator 1 de Ribosilação do ADP , Proteínas de Transporte de Cátions , Cobre , Transporte de Íons/fisiologia , Interferência de RNA/fisiologia , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Brefeldina A/farmacologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , ATPases Transportadoras de Cobre , Drosophila , Fibroblastos/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HeLa , Humanos
17.
Proteomics ; 10(12): 2377-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20391539

RESUMO

The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal "toxic moiety" of Alzheimer's disease. However, despite much work focused on both Abeta and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein-protein interaction networks can provide insight into protein function, however, high-throughput data often report false positives and are in frequent disagreement with low-throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Abeta to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Biologia de Sistemas , Humanos , Ligação Proteica
18.
J Biol Inorg Chem ; 15(1): 61-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19862561

RESUMO

Alzheimer's disease (AD) is the most common form of neurodegenerative disease. The brain is particularly vulnerable to oxidative damage induced by unregulated redox-active metals such as copper and iron, and the brains of AD patients display evidence of metal dyshomeostasis and increased oxidative stress. The colocalisation of copper and amyloid beta (Abeta) in the glutamatergic synapse during NMDA-receptor-mediated neurotransmission provides a microenvironment favouring the abnormal interaction of redox-potent Abeta with copper under conditions of copper dysregulation thought to prevail in the AD brain, resulting in the formation of neurotoxic soluble Abeta oligomers. Interactions between Abeta oligomers and copper can further promote the aggregation of Abeta, which is the core component of extracellular amyloid plaques, a central pathological hallmark of AD. Copper dysregulation is also implicated in the hyperphosphorylation and aggregation of tau, the main component of neurofibrillary tangles, which is also a defining pathological hallmark of AD. Therefore, tight regulation of neuronal copper homeostasis is essential to the integrity of normal brain functions. Therapeutic strategies targeting interactions between Abeta, tau and metals to restore copper and metal homeostasis are discussed.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Cobre/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Animais , Transporte Biológico , Encéfalo/fisiopatologia , Humanos , Estresse Oxidativo , Transmissão Sináptica
19.
J Biol Chem ; 284(33): 21899-21907, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19542222

RESUMO

Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), beta-amyloid peptide (Abeta) aggregation, and amyloid formation. Abeta.copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the beta-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. beta- and gamma-secretases, and Abeta have been identified in lipid rafts in cultured cells, human and rodent brains, but the role of copper in lipid raft amyloidogenic processing is presently unknown. In this study, we found that copper modulates flotillin-2 association with cholesterol-rich lipid raft domains, and consequently Abeta synthesis is attenuated via copper-mediated inhibition of APP endocytosis. We also found that total cellular copper is associated inversely with lipid raft copper levels, so that under intracellular copper deficiency conditions, Abeta.copper complexes are more likely to form. This explains the paradoxical hypermetallation of Abeta with copper under tissue copper deficiency conditions in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cobre/deficiência , Regulação da Expressão Gênica , Microdomínios da Membrana/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Cobre/metabolismo , DNA Complementar/metabolismo , Endocitose , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos
20.
Biochem J ; 401(2): 569-79, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17009961

RESUMO

The MNK (Menkes disease protein; ATP7A) is a major copper- transporting P-type ATPase involved in the delivery of copper to cuproenzymes in the secretory pathway and the efflux of excess copper from extrahepatic tissues. Mutations in the MNK (ATP7A) gene result in Menkes disease, a fatal neurodegenerative copper deficiency disorder. Currently, detailed biochemical and biophysical analyses of MNK to better understand its mechanisms of copper transport are not possible due to the lack of purified MNK in an active form. To address this issue, we expressed human MNK with an N-terminal Glu-Glu tag in Sf9 [Spodoptera frugiperda (fall armyworm) 9] insect cells and purified it by antibody affinity chromatography followed by size-exclusion chromatography in the presence of the non-ionic detergent DDM (n-dodecyl beta-D-maltopyranoside). Formation of the classical vanadate-sensitive phosphoenzyme by purified MNK was activated by Cu(I) [EC50=0.7 microM; h (Hill coefficient) was 4.6]. Furthermore, we report the first measurement of Cu(I)-dependent ATPase activity of MNK (K0.5=0.6 microM; h=5.0). The purified MNK demonstrated active ATP-dependent vectorial 64Cu transport when reconstituted into soya-bean asolectin liposomes. Together, these data demonstrated that Cu(I) interacts with MNK in a co-operative manner and with high affinity in the sub-micromolar range. The present study provides the first biochemical characterization of a purified full-length mammalian copper-transporting P-type ATPase associated with a human disease.


Assuntos
Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/isolamento & purificação , Proteínas de Transporte de Cátions/metabolismo , Membranas/enzimologia , Animais , Baculoviridae/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre , Humanos , Lipossomos/metabolismo , Solubilidade , Spodoptera , Vanadatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...